Ru En
Пептиды и стволовые клетки
Научно-Информационный Центр (НИЦ)
Общество

Ссылки на источники публикаций ученых СПб ИБиГ

1. Хавинсон В.Х., Проняева В.Е., Линькова Н.С., Трофимова С.В., Умнов Р.С. Молекулярные аспекты пептидной регуляции функций сетчатки при пигментном ретините // Физиология человека. 2014. Т. 40, № 1. С. 129-134.

2. Khavinson V., Diomede F., Mironova E., Linkova N., Trofimova S., Trubiani O., Caputi S., Sijari B. AEDG Peptide (Epitalon) Stimulates Gene Expression and Protein Synthesis during Neurogenesis: Posible Epigenetic Mechanism. // Molecules. – 2020. – Vol. 25, Issue 3, 609. – 17 p. DOI: 10.3390/molecules25030609

3. Khavinson V., Razumovsky M., Trofimova S. Pinealregulating tetrapeptide epitalon improves eye retina condition in retinitis pigmentosa // Neuroendocrinology Letters. 2002. Vol. 23. P. 365-368

4. Хавинсон В.Х., Проняева В.Е., Линькова Н.С., Трофимова С.В. Пептидергическая регуляция дифференцировки эмбриональных клеток сетчатки // Клеточные технологии в биологии и медицине. 2013. № 1. С. 57-60.

5. Гутоп Е.О., Линькова Н.С., Фридман Н.В., Кожевникова Е.О., Полякова В.О., Хавинсон В.Х. Пептид AED активирует экспрессию генов и синтез белков дифференцировки фибробластов кожи человека при репликативном старении. // Молекулярная медицина. – 2022. – Т. 20, № 2. – С. 32-38. DOI: 10.29296/24999490-2022-02-05

6. Хавинсон В.Х., Линькова Н.С., Умнов Р.С. Пептид KED: Молекулярно-генетические аспекты регуляции нейрогенеза при болезни Альцгеймера. // Бюллетень экспериментальной биологии и медицины. – 2021. – Т. 171, № 2. – С. 150-154. DOI: 10.47056/0365-9615-2021-171-2-150-154

7. Ashapkin V., Khavinson V., Shilovsky G., Linkova N., Vanuyshin B. Gene expression in human mesenchymal stem cell aging cultures: modulation by short peptides. // Molecular Biology Reports. – 2020. – Vol. 47. – P. 4323-4329. DOI: 10.1007/s11033-020-05506-3

8. Khavinson V., Linkova N., Diatlova A., Trofimova S. Peptide Regulation of Cell Differentiation. // Stem Cell Reviews and Reports. – 2020. – Vol. 16. – P. 118-125. DOI: 10.1007/s12015-019-09938-8

9. Sinjari B., Diomede F., Khavinson V., Mironova E., Linkova N., Trofimova S., Trubiani O., Caputi S. Short Peptides Protect Oral Stem Cells from Ageing. // Stem Cell Reviews and Reports. – 2020. – Vol. 16. – P. 159-166. DOI: 10.1007/s12015-019-09921-3

Ссылки на источники публикаций других авторов

1. Shivaraju M, Chitta UK, Grange RMH, Jain IH, Capen D, Liao L, Xu J, Ichinose F, Zapol WM, Mootha VK, Rajagopal J. Airway stem cells sense hypoxia and differentiate into protective solitary neuroendocrine cells. Science. 2021 Jan 1;371(6524):52-57.

2. Taub AF, Pham K. Stem Cells in Dermatology and Anti-aging Care of the Skin. Facial Plast Surg Clin North Am. 2018 Nov;26(4):425-437.

3. Alarfaj AA, Hirad AH, Munusamy MA, Kumar SS, Higuchi A. Human embryonic stem cells cultured on hydrogels grafted with extracellular matrix protein-derived peptides with polyethylene glycol joint nanosegments. IET Nanobiotechnol. 2022 Dec;16(9):295-304.

4. Apavaloaei A, Hesnard L, Hardy MP, Benabdallah B, Ehx G, Thériault C, Laverdure JP, Durette C, Lanoix J, Courcelles M, Noronha N, Chauhan KD, Lemieux S, Beauséjour C, Bhatia M, Thibault P, Perreault C. Induced pluripotent stem cells display a distinct set of MHC I-associated peptides shared by human cancers. Cell Rep. 2022 Aug 16;40(7):111241.

5. Lu Y, Li Z, Li L, Chen J, Xu X, Lin Z, Zhang T, Zhu Y, Ding C, Mao C. Highly effective rheumatoid arthritis therapy by peptide-promoted nanomodification of mesenchymal stem cells. Biomaterials. 2022 Apr;283:121474.

6. Zhang X, Lei T, Du H. Prospect of cell penetrating peptides in stem cell tracking. Stem Cell Res Ther. 2021 Aug 14;12(1):457.

7. Guo Y, Yan R, Wang X, Liang G, Yang A, Li J. Near-Infrared Light-Controlled Activation of Adhesive Peptides Regulates Cell Adhesion and Multidifferentiation in Mesenchymal Stem Cells on an Up-Conversion Substrate. Nano Lett. 2022 Mar 23;22(6):2293-2302.

8. Norona J, Apostolova P, Schmidt D, Ihlemann R, Reischmann N, Taylor G, Köhler N, de Heer J, Heeg S, Andrieux G, Siranosian BA, Schmitt-Graeff A, Pfeifer D, Catalano A, Frew IJ, Proietti M, Grimbacher B, Bulashevska A, Bhatt AS, Brummer T, Clauditz T, Zabelina T, Kroeger N, Blazar BR, Boerries M, Ayuk F, Zeiser R. Glucagon-like peptide 2 for intestinal stem cell and Paneth cell repair during graft-versus-host disease in mice and humans. Blood. 2020 Sep 17;136(12):1442-1455.

9. Lukasova V, Buzgo M, Sovkova V, Dankova J, Rampichova M, Amler E. Osteogenic differentiation of 3D cultured mesenchymal stem cells induced by bioactive peptides. Cell Prolif. 2017 Aug;50(4):e12357. doi: 10.1111/cpr.12357.

10. Kobylyanskii AG, Zolotarev YA, Andreeva LA, Grivennikov IA, Myasoedov NF. Studying the Toxic Effects of Some Biologically Active Peptides on the Model of Mouse Embryonic Stem Cells. Bull Exp Biol Med. 2017 Oct;163(6):731-736.

11. Bilem I, Plawinski L, Chevallier P, Ayela C, Sone ED, Laroche G, Durrieu MC. The spatial patterning of RGD and BMP-2 mimetic peptides at the subcellular scale modulates human mesenchymal stem cells osteogenesis. J Biomed Mater Res A. 2018 Apr;106(4):959-970.

12. Perera TH, Lu X, Howell SM, Kurosu YE, Smith Callahan LA. Combination of IKVAV, LRE, and GPQGIWGQ Bioactive Signaling Peptides Increases Human Induced Pluripotent Stem Cell Derived Neural Stem Cells Extracellular Matrix Remodeling and Neurite Extension. Adv Biosyst. 2020 Aug;4(8):e2000084.

13. Zhou P, Yin B, Zhang R, Xu Z, Liu Y, Yan Y, Zhang X, Zhang S, Li Y, Liu H, Yuan YA, Wei S. Molecular basis for RGD-containing peptides supporting adhesion and self-renewal of human pluripotent stem cells on synthetic surface. Colloids Surf B Biointerfaces. 2018 Nov 1;171:451-460.

14. Cai M, Liu Y, Tian Y, Liang Y, Xu Z, Liu F, Lai R, Zhou Z, Liu M, Dai J, Liu X. Osteogenic peptides in periodontal ligament stem cell-containing three-dimensional bioscaffolds promote bone healing. Biomater Sci. 2022 Mar 29;10(7):1765-1775.

15. Wang M, Deng Y, Zhou P, Luo Z, Li Q, Xie B, Zhang X, Chen T, Pei D, Tang Z, Wei S. In vitro culture and directed osteogenic differentiation of human pluripotent stem cells on peptides-decorated two-dimensional microenvironment. ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4560-72.

16. Oh Y, Ahn CB, Je JY. Blue Mussel-Derived Peptides PIISVYWK and FSVVPSPK Trigger Wnt/β-Catenin Signaling-Mediated Osteogenesis in Human Bone Marrow Mesenchymal Stem Cells. Mar Drugs. 2020 Oct 9;18(10):510.

17. Trivedi M, Zhang Y, Lopez-Toledano M, Clarke A, Deth R. Differential neurogenic effects of casein-derived opioid peptides on neuronal stem cells: implications for redox-based epigenetic changes. J Nutr Biochem. 2016 Nov;37:39-46.

18. Kuang Y, Miki K, Parr CJC, Hayashi K, Takei I, Li J, Iwasaki M, Nakagawa M, Yoshida Y, Saito H. Efficient, Selective Removal of Human Pluripotent Stem Cells via Ecto-Alkaline Phosphatase-Mediated Aggregation of Synthetic Peptides. Cell Chem Biol. 2017 Jun 22;24(6):685-694.e4. doi: 10.1016/j.chembiol.2017.04.010.

19. Camarero-Espinosa S, Cooper-White JJ. Combinatorial presentation of cartilage-inspired peptides on nanopatterned surfaces enables directed differentiation of human mesenchymal stem cells towards distinct articular chondrogenic phenotypes. Biomaterials. 2019 Jul;210:105-115.