Ru En
Пептиды в различных исследованиях
Научно-Информационный Центр (НИЦ)
Общество

Пептиды в различных исследованиях. Публикации по эпиталону (геропротектор с противораковым эффектом) и лекарственному препарату "Тимогену" (иммуномодулятор)

1. Yue X., Liu S.L., Guo J.N., Meng T.G., Zhang X.R., Li H.X., Song C.Y., Wang Z.B., Schatten H., Sun Q.Y., Guo X.P. Epitalon protects against post-ovulatory aging-related damage of mouse oocytes in vitro // Aging (Albany NY). - 2022. - Vol. 14. - P. 3191-3202

2. Smith D.L., Cai J., Zhu S., Wei W., Fukumoto J., Sharma S., Masood R., Gill P.S. Natural killer cell cytolytic activity is necessary for in vivo antitumor activity of the dipeptide L-glutamyl-L-tryptophan // International Journal of Cancerv. - 2003. - Vol. 106. - P. 528-533.

3. Bergeon J.A., Toth I. Enhancement of oral drug absorption—Effect of lipid conjugation on the enzymatic stability and intestinal permeability of l-Glu-l-Trp-NH2 // Bioorganic & Medicinal Chemistry. - 2007. - Vol. 15. - P. 7048-7057.

4. Shibata S., Kuwahara A., Sakaki-Yumoto M., Kawaguchi M., Ishii T., Honma Y. Effects of the dipeptide L-glutamic acid-L-tryptophan on dermatitis in mice and human keratinocytes // Heliyon. - 2022. - Vol. 8. - P. e08729.

5. Patil P.J., Sutar S.S., Usman M., Patil D.N., Dhanavade M.J., Shehzad Q., Mehmood A., Shah H., Teng C., Zhang C., Li X. Exploring bioactive peptides as potential therapeutic and biotechnology treasures: A contemporary perspective // Life Sciences. - 2022. - Vol. 301. - P. 120637.

6. Khedr S., Deussen A., Kopaliani I., Zatschler B., Martin M. Effects of tryptophan-containing peptides on angiotensin-converting enzyme activity and vessel tone ex vivo and in vivo // Eur. J. Nutr. – 2018. – Vol. 57. – N 3. P. 907-915.

7. Khedr S., Klotzsche-von Ameln A., Khedr M., Elsayed M.H., Sudha T., Mousa S.A., Deussen A., Martin M. Characterization of tryptophan-containing dipeptides for anti-angiogenic effects // Acta Physiol. (Oxf). - 2021. – Vol. 231. – N 2. - e13556. doi: 10.1111/apha.13556.

8. Bergeon J.A., Chan Y.N., Charles B.G., Toth I. Oral absorption enhancement of dipeptide L-Glu-L-Trp-OH by lipid and glycosyl conjugation // Biopolymers. – 2008. – Vol. 90. – N 5. P. 633-43.

9. Л.С. Козина, Е.Г. Кочкина, Н.Н. Наливаева, Н.Д. Беляев, Э.Дж. Тернер, А.В. Арутюнян. Влияние пептидов Вилон и Эпиталон на уровень экспрессии неприлизина и инсулин-деградирующего фермента в клетках нейробластомы человека в норме и при гипоксии // Нейрохимия. - 2008. - том 25, № 1-2, с. 82-85

Исследования биологически активных пептидов, в том числе лекарственного препарата гептапептида "Семакс". Работы основателя теории пептидной регуляции И.П. Ашмарина

1. Ashmarin I.P., Obukhova M.F. Regulatory peptides. A functional continuum. Biokhimiia. - 1986. - Vol. 51. - N 4. P. 531-545.

2. Ivanikov I.O., Brekhova M.E., Samonina G.E., Myasoedov N.F., Ashmarin I.P. Therapy of peptic ulcer with semax peptide // Bull. Exp Biol Med. - 2002. - Vol. 134. - N 1. - P. 73-4. doi: 10.1023/a:1020621124776.

3. Ashmarin I.P., Levitskaya N.G., Antonova L.V., Nezavibatko V.N., Alfeeva L.Yu., Dubinin V.A., Golubovich V.P., Ponomareva-Stepnaya M.A., Kamensky A.A. The neurotropic activity of a structural analog of ACTH(5-7) // Regul. Pept. - 1994. - Vol. 14. - N 51(1). - P. 49-54. doi: 10.1016/0167-0115(94)90134-1.

4. Ashmarin I.P., Samonina G.E., Lyapina L.A., Kamenskii A.A., Levitskaya N.G., Grivennikov I.A., Dolotov O.V., Andreeva L.A., Myasoedov N.F. Natural and hybrid ("chimeric") stable regulatory glyproline peptides // Pathophysiology. - 2005. - Vol. 11. - N 4. - P. 179-185. doi: 10.1016/j.pathophys.2004.10.001.

5. Lyapina L.A., Pastorova V.E., Samonina G.E., Ashmarin I.P. The effect of prolil-glycil-proline (PGP) peptide and PGP-rich substances on haemostatic parameters of rat blood. Blood Coagul Fibrinolysis // 2000. - Vol. 11. - N 5. - P. 409-414. doi: 10.1097/00001721-200007000-00002.

6. Sciacca M.F.M., Naletova I., Giuffrida M.L., Attanasio F. Semax, a Synthetic Regulatory Peptide, Affects Copper-Induced Abeta Aggregation and Amyloid Formation in Artificial Membrane Models // ACS Chem Neurosci. - 2022. - Vol. 13. - N 4. - P. 486-496. doi: 10.1021/acschemneuro.1c00707.

7. Gusev E.I., Martynov M.Y., Kostenko E.V., Petrova L.V., Bobyreva S.N. The efficacy of semax in the tretament of patients at different stages of ischemic stroke //Zh Nevrol Psikhiatr Im S S Korsakova. - 2018. - Vol. 118(3. Vyp. 2. P. 61-68. doi: 10.17116/jnevro20181183261-68.

8. Dolotov O.V., Karpenko E.A., Seredenina T.S., Inozemtseva L.S., Levitskaya N.G., Zolotarev Y.A., Kamensky A.A., Grivennikov I.A., Engele J., Myasoedov N.F. Semax, an analogue of adrenocorticotropin (4-10), binds specifically and increases levels of brain-derived neurotrophic factor protein in rat basal forebrain //J Neurochem. - 2006. - Vol. 97. - Suppl 1. - P. 82-86. doi: 10.1111/j.1471-4159.2006.03658.x.

9. Medvedeva E.V., Dmitrieva V.G., Povarova O.V., Limborska S.A., Skvortsova V.I., Myasoedov N.F., Dergunova L.V. The peptide semax affects the expression of genes related to the immune and vascular systems in rat brain focal ischemia: genome-wide transcriptional analysis // BMC Genomics. - 2014. - Vol. 15. P. 228. doi: 10.1186/1471-2164-15-228.

10. Dergunova L.V., Dmitrieva V.G., Filippenkov I.B., Stavchansky V.V., Denisova A.E., Yuzhakov V.V., Sevan'kaeva L.E., Valieva L.V., Sudarkina O.Y., Gubsky L.V., Myasoedov N.F., Limborska S.A. The Peptide Drug ACTH(4-7)PGP (Semax) Suppresses mRNA Transcripts Encoding Proinflammatory Mediators Induced by Reversible Ischemia of the Rat Brain // Mol Biol (Mosk). - 2021. - Vol. 55. - N 3. - P. 402-411. doi: 10.31857/S0026898421010043.

11. Volodina M.A., Sebentsova E.A., Glazova N.Y., Manchenko D.M., Inozemtseva L.S., Dolotov O.V., Andreeva L.A., Levitskaya N.G., Kamensky A.A., Myasoedov N.F. Correction of long-lasting negative effects of neonatal isolation in white rats using semax // Acta Naturae. - 2012. - Vol. 4. - N1. - P. 86-92.

12. Flock S., Bailly F., Bailly C., Waring M.J., Hénichart J.P., Colson P., Houssier C. Interaction of two peptide-acridine conjugates containing the SPKK peptide motif with DNA and chromatin // Biomol. Struct. Dyn. - 1994. - Vol. 11. - N 4. P. 881-900. doi:10.1080/07391102.1994.10508039.

13. Cheng C.T., Lo V., Chen J., Chen W.C., Lin C.Y., Lin H.C., Yang C.H., Sheh L. Synthesis and DNA nicking studies of a novel cyclic peptide: cyclo[Lys-Trp-Lys-Ahx- // Bioorg Med Chem. - 2001. - Vol. 9. - N 6. - P. 1493-1498. doi: 10.1016/s0968-0896(01)00043-8.

14. Kim S.J., Miller B., Kumagai H., Silverstein A.R., Flores M., Yen K. Mitochondrial-derived peptides in aging and age-related diseases // Geroscience. - 2021. - Vol. 43. - N 3. - P. 1113-1121. doi: 10.1007/s11357-020-00262-5.

15. Kim K.H., Son J.M., Benayoun B.A., Lee C. The Mitochondrial-Encoded Peptide MOTS-c Translocates to the Nucleus to Regulate Nuclear Gene Expression in Response to Metabolic Stress // Cell Metab. - 2018. - Vol. 28. - N 3. - P. 516-524.e7. doi: 10.1016/j.cmet.2018.06.008.

16. Yuan Y. Mechanisms Inspired Targeting Peptides // Adv. Exp. Med. Biol. - 2020. - Vol. 1248. - P. 531-546. doi: 10.1007/978-981-15-3266-5_21.

17. Otsuki Y., Ii M., Moriwaki K., Okada M., Ueda K., Asahi M. W9 peptide enhanced osteogenic differentiation of human adipose-derived stem cells // Biochem. Biophys. Res. Commun. - 2018. - Vol. 495. - N 1. - P. 904-910. doi: 10.1016/j.bbrc.2017.11.056.

18. Shang N., Bhullar K.S., Hubbard B.P., Wu J. Tripeptide IRW initiates differentiation in osteoblasts differentiation via the RUNX2 pathway // Biochim Biophys Acta Gen Subj. - 2019. - Vol. 1863. - N 6. - P. 1138-1146. doi: 10.1016/j.bbagen.2019.04.007.

19. Tatman P.D., Muhonen E.G., Wickers S.T., Gee A.O., Kim E.S., Kim D.H. Self-assembling peptides for stem cell and tissue engineering // Biomater Sci. - 2016. - Vol. 4. - N 4. - P. 543-54. doi: 10.1039/c5bm00550g.

20. Maestri E., Pavlicevic M., Montorsi M., Marmiroli N. Meta-Analysis for Correlating Structure of Bioactive Peptides in Foods of Animal Origin with Regard to Effect and Stability. // Compr. Rev. Food Sci. Food Saf. - 2019. - Vol. 8. - N 1. - P. 3-30. doi: 10.1111/1541-4337.12402.

21. Marine Bioactive Peptides-An Overview of Generation, Structure and Application with a Focus on Food Sources. Pavlicevic M, Maestri E, Marmiroli M. // Mar Drugs. - 2020. - Vol. 18. - N 8. - P. 424. doi: 10.3390/md18080424.

22. Vakhitova Y.V., Sadovnikov S.V., Borisevich S.S., Ostrovskaya R.U., Gudasheva T.A., Seredenin S.B. Molecular Mechanism Underlying the Action of Substituted Pro-Gly Dipeptide Noopept // Acta Naturae. - 2016. - Vol. 8. - N 1. - P. 82-89.

23. Guglielmi L., Gianfranceschi G.L., Venanzi F., Polzonetti A., Amici D. Specific thymic peptides-DNA interaction. Correlation with the possible stereochemical kinking scheme of DNA // Mol. Biol. Rep. - 1979. - Vol. 4. - N 4. - P. 195-201. doi: 10.1007/BF00777553.

24. Mirzapour-Kouhdasht A., Lee C.W., Yun H., Eun J.B. Structure-function relationship of fermented skate skin gelatin-derived bioactive peptides: a peptidomics approach // Food Sci Biotechnol. - 2021. - Vol. 30, N 13. - P. 1685-1693. doi: 10.1007/s10068-021-00998-6.

25. Apostolopoulos V., Bojarska J., Chai T.T., Elnagdy S., Kaczmarek K., Matsoukas J., New R., Parang K., Lopez O.P., Parhiz H., Perera C.O., Pickholz M., Remko M., Saviano M., Skwarczynski M., Tang Y., Wolf W.M., Yoshiya T., Zabrocki J., Zielenkiewicz P., AlKhazindar M., Barriga V., Kelaidonis K., Sarasia E.M., Toth I. A Global Review on Short Peptides: Frontiers and Perspectives // Molecules. - 2021. - Vol. 26. - N 2. - P. 430. doi: 10.3390/molecules26020430.